
Parametrizations of Local Field Extensions

Kevin Keating
Department of Mathematics

University of Florida

May 19, 2014



Reference

M. Fried and A. Mézard
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Notation

k = algebraically closed field of characteristic p > 0

F = k((x)) = local field of characteristic p

OF = k[[x ]] = ring of integers of F

F = algebraic closure of F

E/F = finite subextension of F/F

All “extensions” are finite extensions of F .

Say extensions E , E ′ are isomorphic if they are isomorphic as
extensions of F .



Series Associated to Extensions

Let E/F be a finite extension, and let πE be a uniformizer for
E . Then there is a unique series

g(T ) =
∞∑
i=1

aiT
i ∈ k[[T ]]

such that x = g(πE ).

If π′E is another uniformizer for E then there is

γ(T ) = b0T + b1T
2 + · · · ∈ k[[T ]]

with b0 6= 0 such that πE = γ(π′E ). Hence x = g(γ(π′E )).

It follows that the series g(γ(T )) is also associated to the
extension E/F .



Extensions Associated to Series

Let n ≥ 1 and let g(T ) =
∞∑
i=1

aiT
i ∈ T n · k[[T ]]×.

By WPT, g(T )− x = u(T )h(T ), with

I u(T ) ∈ OF [[T ]]×

I h(T ) ∈ OF [T ] Eisenstein of degree n.

Let y ∈ F be a root of h(T ). Then F (y) ∼= k((y)) is a
(totally ramified) extension of F of degree n.

The F -isomorphism class of F (y) does not depend on the
choice of root y .

Let Ext(g) denote the F -isomorphism class of the extension
F (y) of F associated to g(T ).



Action of A(k) on T · k[[T ]]

The set A(k) = T · k[[T ]]× is a group under the operation of
substitution.

A(k) acts on the set T · k[[T ]] on the right by substitution.
Let g(T ) ∈ T · k[[T ]] and γ(T ) ∈ A(k). Then

g · γ = g(γ(T )).

Set g̃(T ) = g(γ(T )), and let g̃(T )− x = ũ(T )h̃(T ), with
ũ(T ) ∈ F [[T ]]× and h̃(T ) Eisenstein.

Let ỹ ∈ F be a root of h̃(T ), and set Ẽ = F (ỹ).

Then γ(ỹ) is a root of g(T )− x , so Ẽ is F -isomorphic to E .

Hence Ext(g) ∼= Ext(g · γ), so A(k)-orbits of T · k[[T ]] r {0}
correspond to isomorphism classes of finite extensions of F .



Ramification Data

For i , j ∈ N define

i � j ⇔ i ≤ j and vp(i) ≤ vp(j).

Given g(T ), let Ag = {i ∈ N : ai 6= 0}. The ramification data
of g(T ) is the set Ram(g) of minimal elements of (Ag ,�).

Ram(g) is finite, and forms an antichain in (N,�).

Elements of Ram(g) correspond to nonzero terms aiT
i of

g(T ) such that i and vp(i) are both small.

Say the finite nonempty set D ⊂ N is “valid ramification data”
if (D,�) is an antichain.



Action of A(k) on S(D)

Let D ⊂ N be valid ramification data.

Set S(D) = {g(T ) ∈ T · k[[T ]] : Ram(g) = D}.

Then S(D) 6= { }.

For γ ∈ A(k) we have Ram(g · γ) = Ram(g).

It follows that

I Ram(g) depends only on the extension Ext(g).

I The group A(k) acts on S(D).

We want to construct a small subset of S(D) which has
representatives from every orbit of this action.



Changing g(T )

Let δr (T ) = T + zT r+1, with z ∈ k to be determined.

Then δr ∈ A(k).

What is the smallest degree term in g(δr (T ))− g(T )?

If i = upj with p - u then

δr (T )i = T i + uzp
j

T i+rpj + · · · .

Hence small-degree terms in g(δr (T ))− g(T ) come from
nonzero terms aiT

i in g(T ) with i and j = vp(i) small.

It follows that the crucial terms are those that correspond to
elements of D = Ram(g).



Changing g(T ), continued

Define ΛD : R→ R by

ΛD(t) = min{d + pvp(d)t : d ∈ D}.

Let c = ΛD(r). Then the terms in g(δr (T ))− g(T ) all have
degree ≥ c .

We want z such that the coefficient of T c in g(δr (T )) is 0.

Let q− = Λ′D(r − ε) and q+ = Λ′D(r + ε).

Then
g(δr (T ))− g(T ) = h(zq

+

)T c + · · · ,

with h a separable additive polynomial of degree q−/q+.

Hence there are q−/q+ values z ∈ k which make the
coefficient of T c in g(δr (T )) equal to 0.



Relation with the Usual Ramification Data

Suppose Ram(g) = D, and set E = Ext(g).

Then D can be computed from n = [E : F ] and the indices of
inseparability i0, i1, . . . , iν of E/F :

D = {i0 + n, i1 + n, . . . , iν + n}

Conversely, one can determine n and i0, i1, . . . , iν from D:

n = min(D)

ij = min{d ∈ D : vp(d) ≤ j} − n

Let φE/F be the usual Hasse-Herbrand function. Then

ΛD(r) = n · φE/F (r) + n.



An Example
Let p = 3 and g(T ) = T 9 + T 36 − T 42 + T 48 − T 49 + · · · .
Then D = Ram(g) = {9, 42, 49}.
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Some Sets

Let D ⊂ N be valid ramification data. Also let

D = {d1, d2, . . . , dm} with n = d1 < d2 < · · · < dm

Z = {i ∈ N : ∃j i < dj & vp(i) ≤ vp(dj)}
I = {ΛD(c) : c ∈ N}
L = Nr (D ∪ Z ∪ I )

Then Ram(g) = D if and only if ai 6= 0 for i ∈ D and ai = 0
for i ∈ Z .

By replacing g(T ) with g(γ(T )) for some γ ∈ A(k) we can
assume ad1 = 1 and ai = 0 for i ∈ I .



Parameter Space
Let D be valid ramification data and set D0 = D r {n}.

Define a subset of S(D) by

V (D) =

{
T n +

∑
i∈D0∪L

aiT
i : ai 6= 0 for i ∈ D0

}
.

Then V (D) ∼=
∏
i∈D0

k× ×
∏
i∈L

k .

Let E(D) denote the set of isomorphism classes of finite
extensions of F with ramification data D.

Define ΘD : V (D)→ E(D) by ΘD(g) = Ext(g).

Since every orbit of the action of A(k) on S(D) is represented
in V (D), ΘD is onto.



How Big are the Fibers?

Let D = {d1, d2, . . . , dm} be valid ramification data.

Write d1 = n = upν with p - u.

Let (x1, y1), . . . , (xt , yt) be the vertices of the graph of ΛD .

Define

J(D) = u ·
∏
xi∈N

Λ′D(xi − ε)
Λ′D(xi + ε)

.

Theorem: Let E/F be an extension with ramification data D.
Then the number of g ∈ V (D) such that Ext(g) ∼= E is
J(D)/|Aut(E/F )|.

Hence, for fixed ramification data D, the size of the fibers can
vary.



Separable Extensions of Degree p
Let D = {p,m}, with p < m and p - m.
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Extensions of Degree p, continued

D = {p,m}
Z = {i < m : p - i}
I = {i > p : p | i if i < p(m−1)

p−1 }

L = {i : m < i < p(m−1)
p−1 and p - i}

Set d = |L|. Then V (D) ∼= k× × kd .

Let E ∈ E(D). Then [E : F ] = p, and

J(D) = |Aut(E/F )| =

{
p if p − 1 | m − 1

1 if p − 1 - m − 1.

The fibers of ΘD have cardinality 1 in both cases. Therefore
ΘD is a bijection.



The Case D = {p, 2p − 1}
E(D) is the set of isomorphism classes of cyclic extensions of
F of degree p with ramification break 1.

Therefore elements of E(D) are generated by roots of
Artin-Schreier equations

T p − T − bpx−1 = 0,

with b ∈ k×.

In this case D0 = {2p − 1} and L = { }, so V (D) ∼= k×.

The element of V (D) which corresponds to the Artin-Schreier
equation above is

g(T ) = T p + b1−pT 2p−1.



The Case D = {p, 3p − 2}, p > 2
E(D) is the set of isomorphism classes of cyclic extensions of
F of degree p with ramification break 2.

Therefore elements of E(D) are generated by roots of
Artin-Schreier equations

T p − T − (bpx−1 + cpx−2) = 0,

with b ∈ k , c ∈ k×.

In this case D0 = {3p − 2} and L = {3p − 1}, so
V (D) ∼= k× × k .

The element of V (D) which corresponds to the Artin-Schreier
equation above is

g(T ) = T p + 1
2
c1−pT 3p−2 + 1

2
bc−pT 3p−1.



The Case D = {2p, 4p − 2}, p > 2

E(D) is the set of isomorphism classes of extensions of F of
degree 2p with lower ramification breaks at 0 and 2.

Elements of E(D) are cyclic extensions of F (x1/2) of degree p
with ramification break 2.

Therefore elements of E(D) are generated over F (x1/2) by
roots of Artin-Schreier equations

T p − T − (bpx−1/2 + cpx−1) = 0,

with b ∈ k , c ∈ k×.

In this case D0 = {4p − 2} and L = {4p − 1}, so
V (D) ∼= k× × k .



D = {2p, 4p − 2}, continued

The element of V (D) which corresponds to the Artin-Schreier
equation above is

g(T ) = T 2p + c1−pT 4p−2 + bc−pT 4p−1.

E = Ext(g) is Galois over F if and only if x1/2 7→ −x1/2
carries the Artin-Schreier equation to another which
corresponds to the same p-extension.

This is equivalent to a4p−1 = bc−p = 0, hence to b = 0.

Thus J(D) = 2p and |Aut(E/F )| = 2p or p, depending on
whether a4p−1 = 0 or not.

If E/F is Galois there is a unique g ∈ V (D) with ΘD(g) = E .
If E/F is not Galois then there are two such g .



A Nice Case

Suppose D is a set of valid ramification data such that

I D 6⊂ pN
I n = pν for some ν ≥ 1

I ΛD has a single vertex (x1, y1)

I x1 ∈ N

Then every extension E/F with Ram(E/F ) = D is Galois,
with Gal(E/F ) an elementary abelian p-group of order pν .

It follows that ΘD : V (D)→ E(D) is a bijection in this case.



How Useful are these Parametrizations?

ΘD : V (D) −→ E(D)

I The construction only works for k algebraically closed.

I The construction can probably be extended to
characteristic 0, but would be messier.

I ΘD is onto, but is not a bijection in general. In fact,
fibers can have different cardinalities.

I Galois and non-Galois extensions are parametrized by the
same variety.

I How natural/canonical is this construction?


